نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
2,769 نتائج ل "Point source pollution"
صنف حسب:
Effect of irrigation amount and fertilization on agriculture non-point source pollution in the paddy field
It is the key point to reveal the effect of irrigation water and fertilization conditions on the agriculture non-point pollution in the paddy field. In this study, the estimation model of agricultural non-point source pollution loads at field scale was established on the basis of agricultural drainage irrigation model and combined with pollutant concentration predication model. Based on the estimation model of agricultural non-point source pollution in the field and experimental data, the load of agricultural non-point source pollution in different irrigate amount and fertilization schedule in paddy field was calculated. The results showed that the variation of field drainage varies greatly under different irrigation conditions, and there is an “inflection point” between the irrigation water amount and field drainage amount. The non-point pollution load increased with the increase of irrigation water and showed a significant power correlation. Under the different irrigation condition, the increase amplitude of non-point pollution load with the increase of irrigation water was different. When the irrigation water is smaller, the non-point pollution load increase relatively less, and when the irrigation water increased to inflection point, the non-point pollution load will increase considerably. In addition, there was a positive correlation between the fertilization and non-point pollution load. The non-point pollution load had obvious difference in different fertilization schedule even with same fertilization level, in which the fertilizer pollution load increased the most in the period of turning green to tillering. The results provide some basis for the field control and management of agricultural non-point source pollution.
Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China
Non-point source (NPS) pollution, including fertilizer and manure application, sediment erosion, and haphazard discharge of wastewater, has led to a wide range of water pollution problems in the Miyun Reservoir, the most important drinking water source in Beijing. In this study, the Soil and Water Assessment Tool (SWAT) model was used to evaluate NPS pollution loads and the effectiveness of best management practices (BMPs) in the two subwatersheds within the Miyun Reservoir Watershed (MRW). Spatial distributions of soil types and land uses, and changes in precipitation and fertilizer application, were analysed to elucidate the distribution of pollution in this watershed from 1990 to 2010. The results demonstrated that the nutrient losses were significantly affected by soil properties and higher in both agricultural land and barren land. The temporal distribution of pollutant loads was consistent with that of precipitation. Soil erosion and nutrient losses would increase risks of water eutrophication and ecosystem degradation in the Miyun Reservoir. The well-calibrated SWAT model was used to assess the effects of several Best Management Practices (BMPs), including filter strips, grassed waterways, constructed wetlands, detention basins, converting farmland to forest, soil nutrient management, conservation tillage, contour farming, and strip cropping. The removal rates of those BMPs ranged from 1.03 to 38.40% and from 1.36 to 39.34% for total nitrogen (TN) and total phosphorus (TP) loads, respectively. The efficiency of BMPs was dependent on design parameters and local factors and varied in different sub-basins. This study revealed that no single BMP could achieve the water quality improvement targets and highlighted the importance of optimal configuration of BMP combinations at sub-basin scale. The findings presented here provide valuable information for developing the sustainable watershed management strategies.
Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China
Agricultural non-point source pollution causes global warming and the deterioration of air and water quality. It is difficult to identify and monitor the emission sources of agricultural pollution due to the large number of farms in China. Many studies focus on the technological aspect of achieving agricultural sustainability, but its socioeconomic aspect is poorly understood. Here, we report how group size (number of farms in a certain region) affects agricultural pollution governance through conducting a social science experiment. We found that when communication was allowed among group members, a small group size facilitated cooperation. Although deviations from the cooperation equilibrium occurred with time in all groups, the smaller the group size, the slower the cooperation equilibrium became frangible. These findings suggest that reducing number of farms and extending the length of farm property rights can benefit the mitigation of agricultural non-point pollution in China. Social science experiments can be a useful tool to understand the socioeconomic aspect of agricultural sustainability.
Preventing Agricultural Non-Point Source Pollution in China: The Effect of Environmental Regulation with Digitization
Environmental regulation (ER) is essential to preventing agricultural non-point source pollution (ANSP). Prior research has focused on the effect of ER on agricultural pollution (AP), but little is known about the impact of ER following digitization on preventing AP, particularly ANSP. Based on the spatial heterogeneity, the effect of ER was examined using a geographic detector tool with provincial panel data from 2010 to 2020 in rural China. The results show that ER is a driver in preventing ANSP, primarily because of the constraint on farmers' behavior. Digitization positively affects the prevention of ANSP, as the new impetus for the infrastructure, technology, and capital is supported. The interaction between ER and digitalization forms a driving effect on the prevention of ANSP, indicating that digitalization constitutes the path dependence of farmers' rule acquisition and perception and addresses the \"free riding\" dilemma of farmers' participation, thereby enabling the incentive of ER to make agricultural production green and efficient. These findings indicate that the endogenous factor of digitization allowing ER is essential to preventing ANSP.
Identifying the critical areas and primary sources for agricultural non-point source pollution management of an emigrant town within the Three Gorges reservoir area
Agricultural non-point source pollution is threatening water environmental health of the Three Gorges reservoir. However, current studies for precision management of the agricultural non-point source pollution within this area are still limited. The objective of this study was identifying the critical areas and primary sources of agricultural non-point source pollution for precision management. Firstly, the inventory analysis approach was used to estimate the discharge amount of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) from farmland fertilizer, crop residues, livestock breeding, and daily activities. Afterwards, the deviation standardization method was applied to evaluate the emission intensity of TN, TP, and COD, as well as calculating the comprehensive pollution index (CPI) of each village, based on which the critical areas for agricultural non-point source pollution management could be distinguished. Moreover, the equivalence pollution load method was conducted to identify the primary pollution sources within each critical zone. The above methods were implemented to an emigrant town within the Three Gorges reservoir area named Gufu. Results showed that agricultural non-point source pollution in Gufu town has been alleviated to a certain extent since 2016. Nevertheless, in four areas of the town (i.e., Longzhu, Fuzi, Shendu, and Maicang), the agricultural non-point source pollution still deserved attention and improvement. For the mentioned critical areas, farmland fertilizer and livestock breeding were the primary sources causing agricultural non-point source pollution. The emission amount of TN and TP from farmland fertilizer accounted for 60% and 48% of the total, respectively. And those from livestock breeding were 29% and 46%. Our research could provide definite targets to relieve agricultural non-point source pollution, which had great significance to protect water environment while coordinating regional economic growth after emigrant resettlement.
Effects of Policy for Controlling Agricultural Non-Point Source Pollution in China: From a Perspective of Regional and Policy Measures Differences
The concerns about the contradiction between agricultural production and Agricultural Non-Point (ANPS) pollution has become increased with economic development in China. Government interventions are key to controlling ANPS pollution through the establishment of laws and policies. This paper uses the entropy method to calculate the emissions amount of ANPS pollution and policy strength of 31 provinces from 2010 to 2019 in China. The dynamic panel data model with system generalized moment is used to estimate the impacts of policies with different measures on ANPS pollution emission. According to our findings, China's policies have been helpful in controlling ANPS pollution though there are important regional differences. Moreover, four types of policy measures all contribute to the reduction in ANPS pollution. These findings improve our understanding of the relationship between policies and ANPS pollution in the analyzed period, thus providing support for the formulation of pollution management strategies in the next stage.
Spatial Pattern Evolution and Influencing Factors on Agricultural Non-Point Source Pollution in Small Town Areas under the Background of Rapid Industrialization
To promote sustainable agricultural development in small town areas during rapid industrialization, it is important to study the evolution of agricultural non-point source pollution (ANSP) and its influencing factors in small town areas in the context of rapid industrialization. The non-point source inventory method was used to study the characteristics of ANSP evolution in 14 small town areas in Gongyi City from 2002 to 2019. Using the spatial Durbin model and geographical detectors, the factors influencing ANSP in small town areas were analyzed in terms of spatial spillover effects and the spatial stratified heterogeneity. The results showed a zigzagging downward trend of ANSP equivalent emissions over time. Spatially, the equivalent emissions of ANSP showed a distribution pattern of being high in the west and low in the east. There was a significant positive global spatial autocorrelation feature and there was an inverted \"U-shaped\" Environmental Kuznets Curve relationship between industrialization and ANSP. Affluence, population size, and cropping structure positively contributed to the reduction of ANSP. Population size, land size, and industrialization were highly influential factors affecting the spatial variation of ANSP and the interaction of these factors was bivariate or nonlinearly enhanced. This study provides a feasible reference for policymakers and managers to develop reasonable management measures to mitigate ANSP in small town areas during rapid industrialization.
Impact of vegetation harvesting on nutrient removal and plant biomass quality in wetland buffer zones
Fertiliser use in agriculture increases the non-point pollution of waters with nitrogen (N) and phosphorus (P). Wetland buffer zones (WBZs) are wetland ecosystems between agricultural lands and water bodies that protect surface waters from non-point source pollution. We assessed how vegetation harvesting within WBZs impacts their N and P removal efficiency, nutrient uptake by plants and their biomass quality. We surveyed vegetation of a spontaneously rewetted fen along a small river in Poland, and analysed plant biomass, its nutrient contents and nutrient-leaching potential and the water chemistry. Total N removal reached 34–92% and total P removal 17–63%. N removal was positively related to the initial N concentration, regardless of mowing status. We found a high N removal efficiency (92%) in the harvested site. Vegetation of mown sites differed from that of unmown sites by a higher water-leached carbon and P contents in the biomass. We found that vegetation harvesting may stimulate the overall N removal, but may increase potential biomass decomposability, which eases the recycling of plant-incorporated nutrients back to WBZ. Thus, mowing should always be followed by the removal of biomass. Neglecting already mown WBZs may temporarily lower their nutrient removal efficiency due to potentially faster decomposition of plant biomass.
Agricultural Insurance and Agricultural Fertilizer Non-Point Source Pollution: Evidence from China’s Policy-Based Agricultural Insurance Pilot
For a long time, the relationship between agricultural insurance and the input of chemical fertilizer has been controversial. Since the pilot of policy-based agricultural insurance in China, most scholars have only paid attention to the role of the policy in ensuring farmers’ income and reducing farmers’ poverty, but its possible negative impact on the agricultural ecological environment is often ignored. If the pilot of this policy motivates farmers to apply more chemical fertilizers, which in turn causes more serious environmental problems, this would be contrary to the goals of the policy itself. Using the panel data of 31 provinces from 2000 to 2020 in China, this paper regards the pilot of policy-based agricultural insurance as a quasi-natural experiment and uses a difference-in-difference model to evaluate the impact of policy-based agricultural insurance on agricultural fertilizer non-point source pollution. The research results show that the pilot of policy-based agricultural insurance has aggravated the non-point source pollution of agricultural fertilizers in China. After a series of robustness tests, the research conclusion is still valid. At the same time, the effect of policy-based agricultural insurance aggravating agricultural fertilizer non-point source pollution had a lasting impact for 4 years during the pilot period and did not disappear until the policy-based agricultural insurance was fully covered. In addition, the heterogeneity results show that farmers in eastern China and high-disaster areas have a higher probability of moral hazard with overuse after purchasing policy-based agricultural insurance.
Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling
The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 − accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 − (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 − outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 − outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.